ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Приложение к свидетельству
Подлежит публикациирждении типа
в открытой печати измерений 35932

СОГЛАСОВАНО

Руководитель ГЦИ СИ ФГУ «Нижегородский ЦСМ»

И.И. Решетник

2009 г.

СЧЕТЧИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ МНОГОФУНКЦИОНАЛЬНЫЕ ПСЧ-4ТМ.05Д

Внесены в Государственный реестр средств измерений.

Регистрационный № <u>41135-09</u>

Взамен №

Выпускаются по ГОСТ Р 52320-2005, ГОСТ Р 52323-2005, ГОСТ Р 52425-2005 и техническим условиям ИЛГШ.411152.162ТУ.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05Д (далее - счетчики) предназначены для измерения активной и реактивной энергии (в том числе и с учетом потерь), ведения массивов профиля мощности нагрузки с программируемым временем интегрирования (в том числе и с учетом потерь), фиксации максимумов мощности, измерения параметров трехфазной сети и параметров качества электрической энергии.

Счетчики имеют интерфейсы связи и предназначены для работы, как автономно, так и в составе автоматизированных систем контроля и учета электроэнергии (АСКУЭ) и в составе автоматизированных систем диспетчерского управления (АСДУ).

Счетчики могут применяться как средство коммерческого или технического учета электрической энергии на предприятиях промышленности и в энергосистемах, осуществлять учет потоков мощности в энергосистемах и межсистемных перетоков.

Счетчики предназначены для установки на рейку типа ТН35 по ГОСТ Р МЭК 60715-2003.

Счетчики предназначены для работы в закрытых помещениях с диапазоном рабочих температур от минус 40 до плюс 55 °C в местах с дополнительной защитой от прямого воздействия воды.

ОПИСАНИЕ

1 Принцип действия

- 1.1 Счетчики ПСЧ-4ТМ.05Д являются измерительными приборами, построенными по принципу цифровой обработки входных аналоговых сигналов. Управление процессом измерения и всеми функциональными узлами счетчика осуществляется высокопроизводительным микроконтроллером (МК), который реализует алгоритмы в соответствии со специализированной программой, помещенной в его внутреннюю память программ. Управление узлами производится через аппаратно-программные интерфейсы, реализованные на портах ввода/вывода МК.
- 1.2 Измерительная часть счетчиков выполнена на основе многоканального аналогоцифрового преобразователя (АЦП), встроенного в микроконтроллер.

АЦП осуществляет выборки мгновенных значений величин напряжения и тока последовательно по шести аналоговым каналам. Микроконтроллер по выборкам мгновенных значений напряжения и тока производит вычисление средних за период сети значений частоты, напряжения, тока, активной и полной мощности, активной и реактивной мощности потерь в каждой фазе сети, производит их коррекцию по амплитуде, фазе и температуре. Вычисление средних за период сети мощностей трехфазной системы производится алгебраическим (с учетом знака направления) суммированием соответствующих мощностей однофазных измерений.

1.3 Вычисления средних за период сети значений мощностей и среднеквадратических значений напряжений и токов в каждой фазе производится по следующим формулам:

где Ui, Ii - выборки мгновенных значений напряжения и тока;

n - число выборок за период сети.

Знаки мощностей однофазных измерений формируются по-разному в зависимости от варианта исполнения и конфигурирования счетчика, как показано в таблице 1.

Таблица 1

Мощность	Двунаправленный счетчик		Комбинированный счетчик		Однонаправ-
	не конфигури-	конфигурирован-	не конфигуриро-	конфигурирован-	ленный
	рованный	ный	ванный	ный	
P+	PIиPIV	PI, PII, PIII, PIV	PI, PII, PIII, PIV	PI, PII, PIII, PIV	PI, PII, PIII, PIV
P-	PII и PIII	-	-	-	-
Q+	QI и QII	QI и QIII	QI и QII	QI и QIII	-
Q-	QIII и QIV	QII и QIV	QIII и QIV	QII и QIV	-

Примечание - P+, Q+ - активная и реактивная мощность прямого направления, P-, Q- - активная и реактивная мощность обратного направления, PI, QI, PII, QII, PIII, QIII, PIV, QIV — активная и реактивная составляющие вектора полной мощности первого, второго, третьего и четвертого квадрантов соответственно.

Вычисление активной и реактивной мощности потерь за период сети в каждой фазе производится по следующим формулам:

$$P_{\Pi} = \left(\frac{I}{I_{H}}\right)^{2} \cdot P_{\Pi.\Pi.HOM} + \left(\frac{I}{I_{H}}\right)^{2} \cdot P_{\Pi.H.HOM} + \left(\frac{U}{U_{H}}\right)^{2} \cdot P_{\Pi.XX.HOM}$$
 (6)

$$Q_{\Pi} = \left(\frac{I}{I_{H}}\right)^{2} \cdot Q_{\Pi.\Pi.HOM} + \left(\frac{I}{I_{H}}\right)^{2} \cdot Q_{\Pi.H.HOM} + \left(\frac{U}{U_{H}}\right)^{4} \cdot Q_{\Pi.XX.HOM}$$
 (7)

где I - среднеквадратическое значение тока за период сети (5);

U - среднеквадратическое значение фазного напряжения (4);

Рп.л.ном - номинальная активная мощность потерь в линии электропередачи;

Рп.н.ном - номинальная активная мощность нагрузочных потерь в силовом трансформаторе;

Рп.хх.ном - номинальная активная мощность потерь холостого хода в силовом трансформаторе;

Оп.л.ном - номинальная реактивная мощность потерь в линии электропередачи;

Qп.н.ном - номинальная реактивная мощность нагрузочных потерь в силовом трансформаторе;

Qп.хх.ном - номинальная реактивная мощность потерь холостого хода в силовом трансформаторе;

Номинальные мощности потерь вводятся в счетчик как конфигурационные параметры и представляют собой мощность потерь в одной фазе, приведенную к входу счетчика при номинальном токе и напряжении счетчика.

- 1.4 По полученным за период сети значениям активной и реактивной мощности трехфазной системы формируются импульсы телеметрии на двух конфигурируемых испытательных выходах счетчика. Сформированные импульсы подсчитываются контроллером и сохраняются в регистрах текущих значений энергии и профиля мощности по каждому виду энергии (мощности) и направлению до свершения события. По свершению события, текущие значения энергии или мощности добавляются в соответствующие энергонезависимые регистры учета энергии и массивы профиля мощности. При этом в качестве события выступает время окончания текущего тарифа или время окончания интервала интегрирования мощности для массива профиля, определяемое по встроенным энергонезависимым часам реального времени.
- 1.5 При учете потерь импульсы телеметрии формируются с учетом мощности потерь (Р±Рп формулы (1), (6), Q±Qп формулы (3), (7)), подсчитываются контроллером и отдельно сохраняются в регистрах текущих значений энергии и профиля мощности с учетом потерь по каждому виду энергии (мощности) и направлению до свершения события. Знак учета потерь является конфигурационным параметром счетчика и зависит от расположения точки учета и точки измерения.

2 Варианты исполнения

- 2.1 В модельный ряд счетчиков входят двунаправленные счетчики активной и реактивной энергии, однонаправленные счетчики активной энергии и комбинированные счетчики активной и реактивной энергии. Варианты исполнения счетчиков приведены в таблице 2.
- 2.2 Двунаправленные счетчики предназначены для многотарифного учета активной и реактивной электрической энергии прямого и обратного направления (четыре канала учета).

Двунаправленные счетчики могут конфигурироваться для работы в однонаправленном многотарифном режиме (далее двунаправленные конфигурированные, три канала учета) и учитывать:

- активную энергию прямого и обратного направления, как активную энергию прямого направления (учет по модулю);
- реактивную энергию первого и третьего квадранта, как реактивную энергию прямого направления (индуктивная нагрузка);
- реактивную энергию четвертого и второго квадранта, как реактивную энергию обратного направления (емкостная нагрузка).
- 2.3 Комбинированные счетчики предназначены для учета активной энергии независимо от направления в каждой фазе сети (учет по модулю) и для учета реактивной энергии прямого и обратного направления (три канала учета). Комбинированные счетчики могут конфигурироваться для учета реактивной энергии в одном направлении (далее комбинированные конфигурированные) и учитывать:
- активную энергию прямого и обратного направления, как активную энергию прямого направления (учет по модулю);

- реактивную энергию первого и третьего квадранта, как реактивную энергию прямого направления (индуктивная нагрузка);
- реактивную энергию четвертого и второго квадранта, как реактивную энергию обратного направления (емкостная нагрузка).
- 2.4 Однонаправленные счетчики предназначены для учета только активной электрической энергии независимо от направления тока в каждой фазе сети (один канал учета по модулю).

Таблица 2 – Варианты исполнения счетчиков

Условное обозна- чение счетчика	Номинальное напряжение, В	Учет энергии	Вариант исполнения
ПСЧ-4ТМ.05Д.01	3×(57,7-115)/(100-200)	Двунаправленные (четыре канала учета) активной и реактивной	ИЛГШ.411152.162
ПСЧ-4ТМ.05Д.05	3× (120-230)/(208-400)	энергии прямого и обратного на- правления	-01
ПСЧ-4ТМ.05Д.09	3×(57,7-115)/(100-200)	Однонаправленные (один канал	-02
ПСЧ-4ТМ.05Д.11	3× (120-230)/(208-400)	учета по модулю) активной энергии независимо от направления	-03
ПСЧ-4ТМ.05Д.13	3×(57,7-115)/(100-200)	Комбинированные (три канала учета) активной энергии незави-	-04
ПСЧ-4ТМ.05Д.17	3× (120-230)/(208-400)	симо от направления и реактив- ной энергии прямого и обратного направления	-05
Примечания - Базовыми моделями являются счетчики следующих вариантов исполнения:			

ПСЧ-4ТМ.05Д.01 по ИЛГШ.411152.162 и ПСЧ-4ТМ.05Д.05 по ИЛГШ.411152.162.01.

- 2.5 Счетчики предназначены для многотарифного учета электрической энергии в трех и четырехпроводных сетях переменного тока с напряжением 3×(57,7-115)/(100-200) В или $3\times(120-230)/(208-400)$ В, частотой (50 ± 2,5) Гц, номинальным (максимальным) током 5(7,5) А.
- 2.6 Подключение счетчиков к сети производится через измерительные трансформаторы напряжения и тока. Счетчики с номинальным напряжением 3×(57,7-115)/(100-200) В могут использоваться на подключениях с номинальными фазными напряжениями из ряда: 57,7, 63,5, 100, 110, 115 В. Счетчики с номинальным напряжением $3\times(120-230)/(208-400)$ В могут использоваться как с измерительными трансформаторами напряжения, так и без них на подключениях с номинальными фазными напряжениями из ряда: 120, 127, 173, 190, 200, 220, 230 В.

3 Тарификация и архивы учтенной энергии

- Счетчики ведут многотарифный учет энергии (без учета потерь) в четырех тарифных зонах, по четырем типам дней в двенадцати сезонах. Дискрет тарифной зоны составляет 10 минут. Чередование тарифных зон в сутках ограничено числом десятиминутных интервалов в сутках и составляет 144 интервала. Тарификатор счетчиков использует расписание праздничных дней и список перенесенных дней.
- 3.2 Счетчики ведут бестарифный учет активной и реактивной энергии с учетом потерь в линии электропередачи и силовом трансформаторе.
- Счетчики ведут архивы тарифицированной учтенной энергии и не тарифицированной энергии с учетом потерь (активной, реактивной прямого и обратного направления), а также учет числа импульсов, поступающих от внешних устройств по цифровому входу:
 - всего от сброса (нарастающий итог);
 - за текущие и предыдущие сутки;
 - на начало текущих и предыдущих суток;
 - за текущий месяц и двенадцать предыдущих месяцев;

- на начало текущего месяца и двенадцати предыдущих месяцев;
- за текущий и предыдущий год;
- на начало текущего и предыдущего года.

4 Профили мощности нагрузки

- 4.1 Двунаправленные счетчики ведут два четырехканальных независимых массива профиля мощности с программируемым временем интегрирования от 1 до 60 минут для активной и реактивной мощности прямого и обратного направления (четыре канала).
- 4.2 Комбинированные счетчики ведут один трехканальный массив профиля мощности с программируемым временем интегрирования от 1 до 60 минут для активной мощности не зависимо от направления и реактивной мощности прямого и обратного направления.
- 4.3 Однонаправленные счетчики ведут один одноканальный массив профиля мощности с программируемым временем интегрирования от 1 до 60 минут для активной мощности не зависимо от направления.
- 4.4 Каждый массив профиля мощности может конфигурироваться для ведения профиля мощности нагрузки с учетом активных и реактивных потерь в линии электропередачи и силовом трансформаторе со временем интегрирования от 1 до 30 минут.
- 4.5 Глубина хранения каждого массива профиля, при времени интегрирования 30 минут, составляет 113 суток (3,7 месяца).

5 Регистрация максимумов мощности нагрузки

- 5.1 Счетчики могут использоваться как регистраторы максимумов мощности (активной, реактивной, прямого и обратного направления) по каждому массиву профиля мощности с использованием двенадцатисезонного расписания утренних и вечерних максимумов.
 - 5.2 Максимумы мощности фиксируются в архивах счетчика:
 - от сброса (по интерфейсному запросу):
 - за текущий и каждый из двенадцати предыдущих месяцев.
- 5.3 В архивах максимумов фиксируется значение максимума мощности и время, соответствующее окончанию интервала интегрирования мощности соответствующего массива профиля.
- 5.4 Если массив профиля мощности сконфигурирован для мощности с учетом потерь, то в архивах максимумов фиксируется максимальная мощность с учетом потерь.

6 Измерение параметров сети и показателей качества электрической энергии

- 6.1 Счетчики измеряют мгновенные значения (время интегрирования 1 секунда) физических величин, характеризующих трехфазную электрическую сеть, и могут использоваться как измерители параметров, приведенных в таблице 3 или как датчики параметров с нормированными метрологическими характеристиками.
- 6.2 Счетчики всех вариантов исполнения, не зависимо от конфигурации, работают как четырехквадрантные измерители с учетом направления и угла сдвига фаз между током и напряжением в каждой фазе сети и могут использоваться для оценки правильности подключения счетчика. Мгновенные мощности трехфазных измерений определяются с учетом варианта исполнения и конфигурации, как описано в п.п. 1.2, 1.3.
- 6.3 Счетчики могут использоваться как измерители показателей качества электрической энергии согласно ГОСТ 13109-97 по параметрам установившегося отклонения фазных или межфазных напряжений и частоты сети.

Таблица 3

Наименование параметра и размерность	Цена единицы младшего разряда индикатора	Примечание	
Активная мощность, Вт	0,01		
Реактивная мощность, вар	0,01]	
Полная мощность, ВА	0,01	По каждой фазе сети и	
Активная мощность потерь, Вт	0,01 до 999,99 Вт; 0,1 от 1000,0 Вт и выше	сумме фаз	
Реактивная мощность потерь, вар	0,01 до 999,99 вар; 0,1 от 1000,0 вар и выше]	
Фазное напряжение, В	0,01	По каждой фазе сети	
Межфазное напряжение, В	0,01	По каждой паре фаз	
Ток, А	0,001	По каждой фазе сети	
Коэффициент активной мощности	0,01	По каждой фазе сети и сумме фаз	
Частота сети, Гц	0,01		
Текущее время, с	1		
Текущая дата			
Температура внутри счетчика, °С	1		

7 Испытательные выходы и цифровой вход

- 7.1 В счетчиках функционируют два изолированных испытательных выхода основного передающего устройства. Каждый испытательный выход может конфигурироваться:
- для формирования импульсов телеметрии одного из каналов учета энергии (активной, реактивной, прямого и обратного направления, в том числе и с учетом потерь);
- для формирования статических сигналов индикации превышения программируемого порога мощности (активной, реактивной, прямого и обратного направления);
 - для формирования сигналов телеуправления.
 - 7.2 В счетчиках функционирует один цифровой вход, который может конфигурироваться:
 - для управления режимом поверки;
- для счета нарастающим итогом количества импульсов, поступающих от внешних устройств (по переднему, заднему фронту или обоим фронтам);
 - как вход телесигнализации.

8 Журналы

- 8.1 Счетчики ведут журналы событий, журналы показателей качества электрической энергии, журналы превышения порога мощности и статусный журнал.
 - 8.2 В журналах событий фиксируются времена начала/окончания следующих событий:
 - время выключения/включения счетчика;
 - время выключения/включения фазы 1, фазы 2, фазы 3;
- время открытия/закрытия защитных крышек контактной колодки и интерфейсных соединителей;
 - время коррекции времени и даты;
 - время коррекции тарифного расписания;
 - время коррекции расписания праздничных дней;
 - время коррекции списка перенесенных дней;
 - время коррекции расписания утренних и вечерних максимумов мощности;
 - время последнего программирования;

- дата и количество перепрограммированных параметров;
- время изменения состояния входа телесигнализации (20 записей);
- время инициализации счетчика;
- время сброса показаний (учтенной энергии);
- время инициализации первого и второго массива профиля мощности;
- время сброса максимумов мощности по первому и второму массиву профиля;
- дата и количество попыток несанкционированного доступа к данным;
- время и количество измененных параметров измерителя качества;
- время и количество измененных параметров измерителя потерь.

Все перечисленные журналы имеют глубину хранения по 10 записей, кроме указанных особо.

- 8.3 В журналах показателей качества электроэнергии фиксируются времена выхода/возврата за установленные верхнюю/нижнюю нормально/предельно допустимую границу отклонения напряжения (фазного или межфазного в зависимости от конфигурации) и частоты. Глубина хранения каждого журнала выхода за нормально допустимые границы 20 записей, за предельно допустимые границы 10 записей.
- 8.4 В журналах превышения порога мощности фиксируется время выхода/возврата за установленную границу среднего значения активной и реактивной мощности прямого и обратного направления из первого или второго массива профиля мощности. Глубина хранения журнала по каждой мощности 10 записей.
- 8.5 В статусном журнале фиксируется время и значение измененного слова состояния счетчика. Глубина хранения статусного журнала 10 записей.

9 Устройство индикации

- 9.1 Счетчики имеют жидкокристаллический индикатор (ЖКИ) для отображения учтенной энергии и измеряемых величин и три кнопки управления режимами индикации.
- 9.2 Счетчик в режиме индикации основных параметров позволяет отображать на индикаторе учтенную активную и реактивную энергию прямого и обратного направления:
 - нарастающего итога (всего от сброса показаний) по текущему тарифу;
 - нарастающего итога (всего от сброса показаний) по каждому тарифу и сумме тарифов;
 - за текущий месяц и 12 предыдущих месяцев по каждому тарифу и сумме тарифов.
- 9.3 Счетчики в режиме индикации вспомогательных параметров позволяют отображать на индикаторе данные вспомогательных режимов измерения, приведенные в таблице 3.

10 Интерфейсы связи

- 10.1 Счетчики имеют два равноприоритетных, независимых, гальванически развязанных интерфейса связи: RS-485 и оптический интерфейс (ГОСТ Р МЭК 61107-2001).
- 10.2 Счетчики поддерживают ModBus-подобный, СЭТ-4ТМ.02-совместимый протокол и обеспечивают возможность дистанционного управления функциями, программирования (перепрограммирования) режимов и параметров и считывания параметров и данных измерений.
- 10.3 Работа со счетчиками через интерфейсы связи может производиться с применением программного обеспечения «Конфигуратор СЭТ-4TM».
- 10.4 Доступ к параметрам и данным со стороны интерфейсов связи защищен паролями на чтение и программирование (два уровня доступа). Метрологические коэффициенты и заводские параметры защищены аппаратной перемычкой и не доступны без вскрытия пломб.

11 Условия эксплуатации

11.1 В части воздействия климатических факторов внешней среды и механических нагрузок счетчики соответствуют условиям группы 4 по ГОСТ 22261-94 для работы при температуре окру-

жающего воздуха от минус 40 до плюс 55 °C, относительной влажности 90 % при температуре плюс 30 °C и давлении от 70 до 106,7 кПа.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование величины	Значение
Класс точности при измерении в прямом и	
обратном направлении:	
 активной энергии 	0,5 S по ГОСТ Р 52323-2005;
реактивной энергии	1,0 по ГОСТ Р 52425-2005
Номинальный (максимальный) ток, А	5(7,5)
Стартовый ток (чувствительность), мА	0,001Іном
Номинальные напряжения, В	3×(57,7-115)/(100-200) или 3×(120-230)/(208-400) (см. таблицу 2)
Установленный рабочий диапазон напряжений, В, счетчиков с Uном:	от 0,8Uном до 1,15Uном
- 3×(57,7-115)/(100-200) B	3×(46-132)/(80-230);
- 3×(120-230)/(208-400) B	3×(96-265)/(166-460)
Предельный рабочий диапазон фазных напряжений, В, счетчиков с Uном:	(верхнее предельное напряжение в двух любых фазах)
- 3×(57,7-115)/(100-200) B	от 0 до 220;
- 3×(120-230)/(208-400) B	от 0 до 440
Номинальная частота сети, Гц	50
Диапазон рабочих частот, Гц	от 47,5 до 52,5
Пределы допускаемой основной относитель-	
ной погрешности измерения, %:	
	$\pm 0,5$ при $0,05$ Іном $\leq I \leq Imax, cos \phi = 1;$
направления при активной, индуктивной и ем-	± 0.6 при 0.05 Іном $\leq I \leq Imax$, $\cos \varphi = 0.5$;
костной нагрузках), δ_P	$\pm 1,0$ при $0,01$ I ном $\leq I < 0,05$ I ном, $\cos \varphi = 1$;
	±1,0 при 0,02Іном ≤ І < 0,05Іном, соѕф=0,5;
	$\pm 1,0$ при $0,05$ Іном $\leq I \leq Imax, \cos \varphi = 0,25;$
- реактивной мощности (прямого и обратно-	$\pm 1,0$ при $0,05$ Іном $\leq I \leq$ Імакс, $\sin \varphi = 1$;
го направления при активной, индуктивной и	$\pm 1,0$ при $0,05$ Іном $\leq I \leq$ Імакс, $\sin \varphi = 0,5$;
емкостной нагрузках), δ_{Q}	±1,5 при 0,01Iном ≤ I < 0,05Iном, sinφ=1;
	±1,5 при 0,02Iном ≤ I < 0,05Iном, sinφ=0,5;
	$\pm 1,5$ при $0,05$ Іном $\leq I \leq$ Імакс, $\sin \varphi = 0,25$;
$-$ полной мощности, δ_S	$\delta_{\rm S} = \delta_{\rm Q}$ (аналогично реактивной мощности);
 напряжения (фазного и межфазного) и их усредненного значения, би 	±0,4 в диапазоне от 0,8Uном до 1,15Uном;
– тока, бі	$\pm 0,4$ при Іном \leq I \leq Імакс;
	$\pm \left[0.4 + 0.02 \left(\frac{I_{\text{ном}}}{I_{\text{X}}} - 1\right)\right]$ при 0.01 Іном $\leq I \leq$ Іном;
частоты и ее усредненного значениямощности активных потерь, δ_{PΠ}	$\pm 0,05$ в диапазоне от 47,5 до 52,5 Гц; $(2\delta i + 2\delta u);$
– мощности реактивных потерь, $\delta_{Q\Pi}$	$(2\delta i + 4\delta u);$

Наименование величины	Значение
- активной энергии и мощности с учетом по-	()
терь (прямого и обратного направления), $\delta_{P \pm P\Pi}$	$\left(\delta_{P} \cdot \frac{P}{P \pm P_{\Pi}} + \delta_{P\Pi} \cdot \frac{P_{\Pi}}{P \pm P_{\Pi}}\right);$
 реактивной энергии и мощности с учетом 	$\left(\begin{array}{ccc} P \pm P_{\pi} & P \pm P_{\pi} \end{array}\right)^{2}$
потерь (прямого и обратного направления),	$\begin{pmatrix} 0 & 0_{\pi} \end{pmatrix}$
$\delta_{Q\pm Q\Pi}$	$\left(\delta_{Q} \cdot \frac{Q}{Q \pm Q_{\Pi}} + \delta_{Q\Pi} \cdot \frac{Q_{\Pi}}{Q \pm Q_{\Pi}}\right)$
Средний температурный коэффициент в диапа-	
зоне температур от минус 40 до плюс 55°C,	
%/К, при измерении:	
 активной энергии и мощности 	0,03 при 0,05Іном ≤ І ≤ Імакс, соѕφ=1;
-	0.05 при 0.05 Іном $\leq I \leq$ Імакс, $\cos \varphi = 0.5$;
 реактивной энергии и мощности 	0,05 при 0,05Іном ≤ І ≤ Імакс, sinφ=1;
	0,07 при 0,05Іном ≤ I ≤ Імакс, sinφ=0,5
Пределы допускаемой дополнительной	0,05δд(t – tн), где δд – пределы допускаемой ос-
погрешности измерения частоты,	новной погрешности измеряемой величины, t –
напряжения и тока в диапазоне температур	температура рабочих условий, tн – температура
от минус 40 до плюс 55°C, бtд, %	нормальных условий
Точность хода встроенных часов в нормаль-	
ных условиях во включенном и выключен-	
ном состоянии, лучше, с/сутки	± 0.5
Изменение точности хода часов в диапазоне	
рабочих температур, с/°С /сутки:	
- во включенном состоянии в диапазоне	10.1
температур от минус 40 до плюс 55°C, менее	$\pm 0,1;$
– в выключенном состоянии в диапазоне	10.22
температур от минус 40 до плюс 70 °C, менее	±0,22
Активная (полная) мощность, потребляемая	
каждой параллельной цепью напряжения, не	
более, Вт (ВА) для счетчиков с Uном:	0.7 (1.1).
- 3×(57,7-115)/(100-200) B	0,7 (1,1);
- 3×(120-230)/(208-400) B	1,2 (2,3)
Полная мощность, потребляемая каждой последовательной цепью, не более, ВА	0,1
Начальный запуск счетчика, менее, с	5
Жидкокристаллический индикатор:	8;
 число индицируемых разрядов нача отприятия в разряда при ото 	0,
- цена единицы младшего разряда при ото-	
бражении энергии, кВт-ч (квар-ч):	0,01;
 нарастающего итога 	0,01;
за месяц	0,1 (при значении энергии от 1000,0 кВт·ч, квар·ч
	и более)
Тарификатор:	
– число тарифов	4;
 число тарифных зон в сутках 	144 зоны с дискретом 10 минут;
– число типов дней	4;
– число сезонов	12

Наименование величины	Значение
Скорость обмена информацией, бит/с:	
 по оптическому порту 	9600;
по интерфейсу RS-485	38400, 28800, 19200, 9600, 4800, 2400, 1200, 600,
	300
Характеристики испытательных выходов:	
 количество испытательных выходов 	2 изолированных конфигурируемых выхода;
 максимальное напряжение 	24 В, в состоянии «разомкнуто»;
максимальный ток	30 мА, в состоянии «замкнуто»;
 выходное сопротивление 	> 50 кОм, в состоянии «разомкнуто»;
Характеристики цифрового входа:	< 200 Ом, в состоянии «замкнуто»
напряжение присутствия сигнала, В	от 4 до 24;
 напряжение присутствия сигнала, В напряжение отсутствия сигнала, В 	от 0 до 1,5
Постоянная счетчика в основном режиме (А),	01 0 A0 1,0
режиме поверки (В), имп/(кВт-ч),	
имп/(квар·ч) для счетчиков (см. таблицу 2):	
3×(57,7-115)/(100-200)B	A=5000, B=160000
3×(120-230)/(208-400) B	A=1250, B=40000
Помехоустойчивость:	ГОСТ Р 52320-2005
 к электростатическим разрядам 	ГОСТ Р 51317.4.2-99 (степень жесткости 4);
- к наносекундным импульсным помехам	ГОСТ Р 51317.4.4-2007 (степень жесткости 4);
- к микросекундным импульсным помехам	ГОСТ Р 51317.4.5-99 (степень жесткости 4);
большой энергии;	
 к радиочастотному электромагнитному по- лю; 	ГОСТ Р 51317.4.3-2006 (степень жесткости 4);
– к колебательным затухающим помехам;	ГОСТ Р 51317.4.12-99 (степень жесткости 3);
к консоительным затухающим помехам;к кондуктивным помехам	ГОСТ Р 51317.4.6-99 (степень жесткости 3)
Помехоэмиссия	ГОСТ Р 51318.22-2006 для оборудования класса Б
Сохранность данных при прерываниях пита-	1,371
ния, лет:	
– информации, более	40;
- внутренних часов, не менее	10 (питание от литиевой батареи)
Защита информации	пароли двух уровней доступа и аппаратная защи-
	та памяти метрологических коэффициентов
Самодиагностика	Циклическая, непрерывная
Рабочие условия эксплуатации:	группа 4 по ГОСТ 22261
— температура окружающего воздуха, °С	от минус 40 до плюс 55;
— относительная влажность при 30 °C, %	до 90;
– давление, кПа (мм. рт. ст.)	от 70 до 106,7 (от 537 до 800)
Средняя наработка до отказа, час	
Средний срок службы, лет	30
Время восстановления, час	2
Масса, кг	0,8
Габаритные размеры, мм	171x113x66,5
	ков пределы допускаемой погрешности измерения
реактивной и полной мощности не нормируют	UX.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Изображение знака утверждения типа наносится на панели счетчиков методом офсетной печати. В эксплуатационной документации на титульных листах изображение знака утверждения типа наносится типографским способом.

КОМПЛЕКТНОСТЬ

Обозначение документа	Наименование и условное обозначение	Кол.
Согласно таблице 2	Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05Д(одно из исполнений)	1
ИЛГШ.411152.162ФО	Формуляр	1
ИЛГШ.411152.162РЭ	Руководство по эксплуатации. Часть 1	1
ИЛГШ.411152.162РЭ1 ¹⁾	Руководство по эксплуатации. Часть 2. Методика поверки	1
ИЛГШ.411152.162РЭ2 ¹⁾	Руководство по эксплуатации. Часть 3. Дистанционный режим	1
ИЛГШ.411152.162РЭ3 ¹⁾	Руководство по эксплуатации. Часть 4. Измерение и учет потерь	1
ИЛГШ.00004-011)	Программное обеспечение «Конфигуратор СЭТ-4ТМ», версия не ниже 28.11.08	1
	Индивидуальная упаковка	1

 $^{^{1)}}$ Поставляется по отдельному заказу.

Примечания

- 1 Ремонтная документация разрабатывается и поставляется по отдельному договору с организациями, проводящими послегарантийный ремонт счетчиков.
- 2 Документы в электронном виде, включая сертификаты, можно взять на сайте завода изготовителя по адресу http://www.nzif.ru/.

ПОВЕРКА

Поверка счетчиков проводится в соответствии с документом ИЛГШ.411152.162РЭ1 «Счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05Д. Руководство по эксплуатации. Часть 2. Методика поверки», согласованным с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ».

Межповерочный интервал 12 лет.

Перечень основного оборудования, необходимого для поверки:

- программируемый трехфазный источник фиктивной мощности МК7006;
- эталонный трехфазный ваттметр-счетчик ЦЭ7008;
- компьютер Pentium-3 (или выше) с операционной системой Windows 98 (или выше);
- программное обеспечение «Конфигуратор СЭТ-4TM»;
- преобразователь интерфейса USB/RS-485 ПИ-2;
- устройство сопряжение оптическое УСО (УСО-2);
- секундомер СОСпр-2б-2;
- источник питания постоянного тока Б5-70;
- частотомер электронно-счетный Ч3-63;
- прибор для измерения электрической прочности изоляции УПУ-10.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ Р 52320-2005. Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии.

ГОСТ Р 52323-2005. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

ГОСТ Р 52425-2005. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

ИЛГШ.411152.162ТУ. Счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05Д. Технические условия.

ЗАКЛЮЧЕНИЕ

Тип «Счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05Д ИЛГШ.411152.162ТУ» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Сертификат соответствия № РОСС RU.АЯ74.В32636 выдан органом по сертификации «Нижегородсертифика» ООО «Нижегородский центр сертификации».

Изготовитель: ФГУП "Нижегородский завод имени М.В. Фрунзе" (ФГУП «НЗиФ»).

Адрес: 603950, г. Нижний Новгород, ГСП-299, пр. Гагарина 174, тел/факс (831) 466-66-00.

Генеральный директор ФГУП «НЗиФ»

Н.А. Воронов